This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Synthesis, Crystal Structures and Properties of $M_3B_3S_6(M = Na, K, Rb)$ And **LiSrB**₃**S**₆ Christian Püttmann^a; Harald Diercks^a; Bernt Krebs^a

^a Anorganisch-Chemisches Institut der Universität, Munster, Germany

To cite this Article Püttmann, Christian, Diercks, Harald and Krebs, Bernt(1992) 'Synthesis, Crystal Structures and Properties of $M_3B_3S_6(M = Na, K, Rb)$ And LiSrB₃S₆, Phosphorus, Sulfur, and Silicon and the Related Elements, 65: 1, 1 – 4

To link to this Article: DOI: 10.1080/10426509208055305 URL: http://dx.doi.org/10.1080/10426509208055305

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS, CRYSTAL STRUCTURES AND PROPERTIES OF $M_3B_3S_6$ (M = Na, K, Rb) AND LiSrB₃S₆

CHRISTIAN PÜTTMANN, HARALD DIERCKS, AND BERNT KREBS Anorganisch-Chemisches Institut der Universität, Wilhelm-Klemm-Straße 8, D-4400 Münster, Germany

Abstract The thioborates $M_3B_3S_6$ (M = Na^{1,2}, K^{1,2}, Rb) and LiSrB₃S₆ were prepared from stoichiometric amounts of the metal sulfides, boron and sulfur. The crystal data for the isotypic $M_3B_3S_6$ (M = Na, K, Rb) compounds are: space group R\overline{3}c; a = 15.118(1), 15.520(5), 15.813(4) Å; c = 7.512(1), 8.424(3), 8.804(1) Å (hexagonal). The crystal data for the first quarternary thioborate LiSrB₃S₆ are: space group Cc; a = 14.933(6), b = 8.703(4), c = 7.866(3) Å, β = 116.76(3)°. All four metathioborates contain isolated B₃S₆³⁻ anions which form B₃S₃ rings with three exocyclic sulfur atoms.

INTRODUCTION

In recent years considerable progress has been observed in the chemistry and structural chemistry of thioborates as well as in the knowledge of their interesting physical properties. This was possible by the development of appropriate and novel methods for their synthesis and crystallization¹.

Unexpected tetrahedral BS₄ coordination has been observed in the heavy metal thioborate Pb₄B₄S₁₀, in TlBS₃, (the first perthioborate) as well as in Ag₆B₁₀S₁₈ and Li_{6+2x}[B₁₀S₁₈]S_x(x≈2). Compared to those ternary phases which have trigonal planar BS₃ coordination like H₃B₃S₆, Tl₃BS₃, and Sr₃[BS₃]₂, these tetrahedral compounds are considerably more stable towards nucleophilic attack by water or oxygen.

SAMPLE PREPARATION AND PROPERTIES

The synthesis of well-defined and highly pure thioborates is difficult because of the high reactivity of the boron sulfides towards a variety of container materials at elevated temperatures. The fused silica tubes usually employed are attacked by boron sulfide at temperatures above 300-400°C, with B-Si exchange and formation of

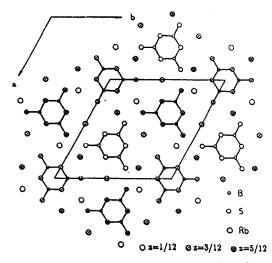


Figure 1 Projection of the unit cell of $Rb_3B_3S_6$ along [0 0 1] $(1/12 \le z \le 5/12)$

silicon-sulfur compounds resulting. Two general methods have proven to be suitable for the preparation of pure samples: (a) the inner surface of the quartz glass crucible is coated with a tight layer of glassy carbon, or (b) crucibles made of glassy carbon, of pressed graphite, or of boron nitride, furnished with a tight screw cap, are used as sample containers. For the high-temperature experiment they are inserted into a coated silica tube. In the following the conditions for the synthesis of pure crystalline samples of $M_3B_3S_6$ and LiSrB₃S₆ are described:

The thioborates were prepared in high temperature reactions from stoichiometric amounts of the metal sulfides, boron, and sulfur using method (a) for Rb₃B₃S₆ and LiSrB₃S₆ and method (b) for Na₃B₃S₆ and K₃B₃S₆. Table I shows the time-temperature program for the preparation of the four metathioborates.

TABLE I Time-Temperature Program for the Preparation of

$Na_3B_3S_6: RT \xrightarrow{2h} 700^{\circ}C (10h) \xrightarrow{1h} 580^{\circ}C \xrightarrow{160h} 500^{\circ}C \xrightarrow{48h} RT$
$K_3B_3S_6: RT \xrightarrow{2h} 625^{\circ}C (10h) \xrightarrow{1h} 520^{\circ}C \xrightarrow{120h} 460^{\circ}C \xrightarrow{44h} RT$
$Rb_3B_3S_6: RT \xrightarrow{2h} 600^{\circ}C (1.5h) \xrightarrow{1/2h} 550^{\circ}C (16h) \xrightarrow{1/2h} 400^{\circ}C (72h) \xrightarrow{240h} RT$
$LiSrB_3S_6: RT \xrightarrow{1/2h} 600^{\circ}C (1.5h) \xrightarrow{1/2h} 800^{\circ}C (3h) \xrightarrow{1/4h} 700^{\circ}C (16h) \xrightarrow{2h} RT$

All four compounds are very sensitive to moisture and have to be handled under dry inert gas.

DESCRIPTION AND DISCUSSION OF THE STRUCTURES

The crystal structures were determined from single crystal X-ray diffraction data. The refinement converged to R values given in Table II. The final atomic coordinates and thermal parameters are given in the Tables III and IV. In the crystal structures of $M_3B_3S_6$ all atoms occupy the special position 18e (x 0 1/4) (hexagonal).

TABLE II R values for the structure solutions

	Na ₃ B ₃ S ₆	K ₃ B ₃ S ₆	Rb ₃ B ₃ S ₆	LiSrB ₃ S ₆
R	0.028	0.030	0.032	0.053
R_w	0.027	0.037	0.028	0.046

TABLE III Atomic coordinates and isotropic thermal parameters ($Å^2$) with standard deviations for $M_3B_3S_6$

Atom	Na ₃ B ₃ S ₆		$K_3B_3S_6$		Rb ₃ B ₃ S ₆	
	x	U•d,	х	Ueq	х .	Ueq
M	0.46108(8)	0.0420(5)	0.45011(7)	0.0368(4)	0.44703(6)	0.0252(4)
S(1)	0.87666(4)	0.0291(3)	0.88080(8)	0.0472(6)	0.88289(16)	0.0391(9)
S(2)	0.23469(4)	0.0294(3)	0.22824(7)	0.0320(4)	0.22438(16)	0.0247(8)
В	0.1177(2)	0.0225(9)	0.1138(3)	0.027(2)	0.1131(7)	0.021(4)

 $^{^{\}bullet}$ U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor.

The isotypic compounds $M_3B_3S_6$ (M=Na, K, Rb) consist of M^+ cations and of isolated, planar $B_3S_6^{\ 3-}$ anions which form B_3S_3 six-membered rings with three exocyclic sulfur atoms. The B-S bond lengths are typical for trigonally coordinated boron (Table V). The exocyclic bond lengths (B-S(2)) are significantly shorter than the bond

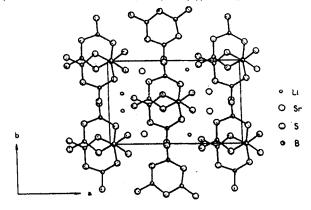


Figure 2 Projection of the unit cell of LiSrB₃S₆ along [0 0 1]

				• •	
Atom	x	у	z	U _{eq}	
Li	0.5967(15)	0.1091(23)	0.5585(30)	0.030(4)	
Sr	0.25940	0.12067(10)	0.52460	0.0135(3)	
S(1)	0.12784(18)	0.10642(28)	0.10197(37)	0.0141(9)	
S(2)	0.80252(19)	0.24762(27)	0.43095(40)	0.0144(8)	
S(3)	0.04147(19)	0.21392(27)	0.56856(43)	0.0201(10)	
S(4)	0.42134(18)	0.01765(25)	0.40736(39)	0.0129(8)	
S(5)	0.68562(19)	0.04912(27)	0.92310(40)	0.0153(9)	
S(6)	0.90428(21)	0.08878(28)	0.01137(55)	0.0276(13)	
B(1)	0.4256(8)	0.1785(11)	0.9732(15)	0.008(2)	
B(2)	0.0206(9)	0.0081(13)	0.5583(18)	0.017(2)	
B(3)	0.7997(8)	0.0405(12)	0.4606(16)	0.011(2)	

TABLE IV Atomic coordinates and isotropic thermal parameters (Å²) with standard deviations for LiSrB₃S₆

TABLE V B-S bond lengths with standard deviations for M3B3S6 (Å)

	$Na_3B_3S_6$	$K_3B_3S_6$	$Rb_3B_3S_6$	Symmetry Code
B-S(1a)	1.824(1)	1.810(3)	1.821(6)	a: y, x-1, 0.5-z
B-S(2)	1.768(3)	1.776(5)	1.760(12)	

lengths in the ring. The coordination sphere of the M⁺ cations consists of seven sulfur atoms with M···S distances between 2.969(1)–3.423(1) Å (Na), 3.206(1)–3.443(2) Å (K), and 3.306(2)–3.521(3) Å (Rb). In the crystal structure of LiSrB₃S₆ similar B-S bond lengths are observed(average: exocyclic: 1.778 Å, ring: 1.817 Å). Li⁺ is tetrahedrally coordinated by sulfur, the coordination sphere of Sr²⁺ consists of nine sulfur atoms with average distances of 2.51 Å (Li···S) and 3.202 Å (Sr···S).

Structurally equivalent six-membered rings are observed in the crystal structures of $M_3B_3O_6^6$ (M=Na, K, Rb, Cs) which are isotypic with $M_3B_3S_6$ (M=Na, K, Rb).

REFERENCES

- 1. B. Krebs, Angew. Chem., 95, 113 (1983); Angew. Chem. Int. Ed. Engl., 22, 113 (1983).
- 2. F. Chopin, G. Turrell, <u>J. Mol. Struct.</u>, <u>3</u>, 57 (1969).
- P. zum Hebel, B. Krebs, M. Grüne, W. Müller-Warmuth, Solid State Ionics, 43, 133 (1990).
- 4. B. Krebs, W. Hamann, J. Less-Common Met., 137, 143 (1988).
- C. Püttmann, P. zum Hebel, A. Hammerschmidt, B. Krebs, <u>Acta Crystallogr.</u>, <u>A46</u>, C-279 (1990).
- 6. W. Schneider, G.B. Carpenter, Acta Crystallogr., B26, 1189, (1970).